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ABSTRACT

Formulations of the principal physical processes active during the formation of nuclear debris are
described, with an emphasis on first principles approaches and moderate computational costs. The
discretization of these models for implementation into numerical codes is also discussed.

1. INTRODUCTION

The capability to predict the characteristics and trajectories of debris particles formed after a nuclear burst
plays an important role in the planning of emergency response and forensic analysis activities (Fahey et al.
[2010]). The limited number of conditions for which nuclear tests were carried out means that
parameterizations based on available experimental data may not be applicable to all the scenarios of
interest, such as water-surface bursts. The use of first principles models is an attractive approach that can
lead to the development of more generic descriptions of the evolution of nuclear debris.

The high initial temperatures in the fireball result in the complete vaporization of the constituents of the
weapon and fission products and depending on the scenario, also of part of the surrounding structures. As
the temperature of the fireball decreases, first by radiation and later by mixing with cooler ambient air, the
species in the gas phase condense into droplets and particles.∗ The order in which these phase
transformations occur is dictated by the intrinsic volatility of the species, their vapor concentration, and the
existing condensed phase. The combination of the radioactive decay process and chemical kinetics leads to
a temporal dependence of the composition of the system, thus affecting the level of supersaturation and the
ability of the constituents of a given mass chain to condense. The rate the phase transformation occurs is
also determined by the available substrate, as the saturation vapor pressure at the surface of particles will
depend on their size and composition. As a result, the characteristics of the condensation process at a given
time will be a function of its previous history, and models need to follow the evolution of the system from
well before a condensed phase emerges.

The change in conditions with time in the fireball leads to an evolving population of debris particles, with
size-dependent compositions and distributions that can be multimodal. The characteristics of particle
samples collected at later times will reflect the convolution of the heterogeneous population in the fireball
with the atmospheric transport process driving the particles to the point of collection. For example, the
ratios of nuclide masses in the samples (after correction for radioactive decay) will not be representative of
those present in the fireball as a whole at a given time. This fractionation phenomenon is a major
complicating factor in the forensic analysis of samples, and models play an important role in the
understanding of its origin and the development of operational techniques to account for it.

In this report we present a description of some of the important physical processes that directly determine
the formation of nuclear debris. We consider these models to be a minimum capability able to satisfy the
principal requirement, which is to compute the functional dependence of nuclide masses with particle size.

∗For the rest of this report we will use the term particle to refer both to liquid and solid particles.
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A first principles approach has been favored here, and it has been balanced with the need for moderate
computational cost. The main assumptions that have allowed for this are the restriction to local uniform
conditions and the use of macroscopic descriptions based on a thermodynamic formalism. Under the
former, we take the conditions of the system during the time interval of the computation to be spatially
uniform in the volume under consideration, being characterized by a single gas temperature and
composition. These models can be applied locally in a fully three-dimensional description that allows for
spatial variations or used under the assumption that mixing in the fireball is intense enough for the
conditions in it to be approximately uniform. Under this approach we also assume that, at a given time, all
particles of a given size have the same composition. The adoption of a thermodynamic description derives
from the current inability of more atomistic approaches to handle the spatial and temporal scales involved
in this problem within a reasonable computational time. Studies at the more fundamental level still play a
role in the understanding of the physical processes and the determination of material properties that are
difficult to measure experimentally, and efforts are ongoing to incorporate this information into the
macroscopic models through parameterizations.

We will focus here on three of the main processes involved in debris formation: nucleation, growth, and
coagulation. By (homogeneous) nucleation we refer to the formation of a condensed phase from the vapor
mix in the gas. Since this involves the appearance of an interface, there is an associated energy barrier that
needs to be surmounted and usually requires substantial levels of supersaturation. In the case when a
condensed phase already exists, further condensation on it (growth) is usually the most energy-favored
path. Additionally, when the number of particles per unit volume is considerable, given the polydispersive
character of the particle population and the high degree of turbulence in the flow, collisions and
coalescence processes can have a profound effect on the overall population.

The temporal variations in the conditions of the systems also produce an approximate continuum of particle
sizes. For computational purposes functional representations of the number and mass distributions need to
be used and several approaches have been developed as part of the studies of other particle-forming
systems (Zhang et al. [2020]). They can be classified as those that assume the general functional form of
the size distributions and those that create a partitioning of the particle-size domain and only impose a
functional dependence within each of those sections (bins). Here we follow the latter approach, usually
described as sectional (Gelbard et al. [1980]), as its provides higher flexibility in the description of the
particle population, which is essential in the case of nuclear debris because it is known that the size
distributions are usually complex and can present multiple modes (Nathans et al. [1969]). Both approaches
introduce errors derived from the discretizations that affect the calculated distributions with spurious
dispersion or diffusion (Tsang and Rao [1988]), but we will consider these limitations to be acceptable
within the degree of accuracy we are searching here. We adopt a sectional description with a functional
dependence in each bin that corresponds to a delta function around a characteristic size, which means that
in each partition all particles have the same dimension. This type of approach is sometimes called a nodal
description (Prakash et al. [2003]).

As shown in Figure 1, we employ an arbitrary partitioning of the particle-size domain† by means of barriers
(Bi) that demarcate sections, and for each of them we adopt as the representative size their midpoint (S i),
that is S i = Bi + ∆S i/2, with the width of the section given by ∆S i = Bi+1 − Bi. In this formulation, the
evolution of the distribution of material masses in each bin (and derived from it that of the particle number)

†By size here we mean a certain function of the volume of the particles.
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Figure 1. Schematic representation of the sectional discretization of the particle size domain and the
action of the nucleation, growth and agglomeration processes.

satisfies an equation known as the general dynamic equation (Gelbard and Seinfeld [1979]),

dmi

dt
=

dmi

dt

∣∣∣∣∣
nucleation

+
dmi

dt

∣∣∣∣∣
growth

+
dmi

dt

∣∣∣∣∣
agglomeration

, (1)

where t refers to time and mi is the mass (per unit volume) of a component in particles with size
corresponding S i.

The solution of this equation implies calculating the mass fluxes between sections and the gas phase, under
the constraint of total mass conservation. The computed evolution of the debris population will necessarily
lead to the formation of particles with sizes different from those represented in the bin distribution and this
makes it necessary to adopt a remapping algorithm, which distributes those masses to existing sections.

One important characteristic of nuclear debris is its complex composition due to the multitude of fission
products formed during the burst. Attempts have been made in the past to describe multicomponent
systems by means of multidimensional size-distributions (Gelbard and Seinfeld [1980]), but they require
working with a number of degrees of freedom on the order of the number of species times the number of
size sections. For the number of nuclides and associated species that need to be considered in the modeling
of nuclear debris these formulations become impractical. From the analysis of fallout particles from
nuclear bursts there is evidence that particles of similar sizes have on average similar compositions and this
is compatible with the assumption of well-mixed conditions in the fireball, except for bursts where there
are substantial amounts of material entrained into the fireball (Adams et al. [1960], Magee [1953]). It is
then justifiable to adopt the approximation that at a given time, particles within a given size bin have the
same composition, an assumption that also forms the basis of widely used analytical approximations to
nuclear debris characteristics (Freiling [1963]). Some refinements of this idea, with higher accuracy but
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more limited applicability, have been proposed for the description of similar multicomponent systems
(Gelbard et al. [1998]), but we do not deem them suitable for the level of complexity and degree of
generality we are pursuing here. In cases when the particle population continues evolving after thermal
equilibrium with the atmosphere has been reached, for example when water condensation is important
during the rise of the nuclear cloud, this assumption will not necessarily be valid. In that case, particles will
follow different trajectories in the cloud and will experience different levels of humidity, resulting in
different growth rates and compositions. Nevertheless, the approach described here will still be useful if
applied locally for a short time interval and in combination with a Lagrangian description of the particles,
where the changes in particle population due to condensation are mapped back to individual particles.

Below we describe, for each term in the general dynamic equation, the physical basis of the associated
processes and the approximations required for a discrete representation. The mass fractions of the
components in the fireball will in general be very dissimilar, with the concentrations of fission products
several orders of magnitude smaller than those of the un-burnt fuel. Since some of those trace constituents
may be of primary interest in the application of the models, care must be taken to select numerical
implementations that are mass conserving. Given the discrete nature of the computational models, this
requirement often results in the introduction of higher uncertainty in other variables, for example in the
number of particles.

Besides the three main processes described here, other physical mechanisms will need to be taken into
account for a complete description of the debris formation process. We only mention their requirements
briefly since their implementation is highly dependent on the way these local models are linked to a global
description.

In addition to nucleation, condensation, and agglomeration, it is necessary to have a good representation of
the chemistry of the fireball, especially in the gas phase. At early time, chemical kinetics can be expected
to be fast because of the high temperatures, but there is still substantial uncertainty about the reaction rates
and species involved (Koroglu et al. [2018], Finko et al. [2017]). In the past, oxides were assumed to be the
dominant species (Miller [1960]), but recently researchers have suggested the possibility of reducing
conditions (Giuli et al. [2010], Cassata et al. [2014]). As a consequence, models need to include a
description of the chemical kinetics and should be updated as research on the reaction pathways and rates
progresses. Since the resolution of isotopic ratios will be an important aspect in many application of these
models, care needs to be taken to preserve those ratios during the numerical solution of the chemical
processes.

Another factor affecting the composition of the system stems from the radioactive decay of many of its
constituents. A decay solver has to be included as part of the modeling and it needs to able to keep track of
the mass fractions of a given nuclide that are associated with different species.

Although the approaches described here assume spatially uniform conditions, it is possible that mass
exchanges with the exterior of the local volume may occur during the computation time. Examples are the
partial precipitation of the condensed phase due to the action of gravity or the entrainment into the fireball
of material from external structures, such as during the so called sweep-up mechanism in bursts close to the
ground. The way these effects are implemented will depend on the specific characteristics of the global
model used, but in terms of its relation to local models, in all cases the underlying assumption is that
changes in the distribution of the condensed phase are spatially uniform in the volume of interest.
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2. NUCLEATION

The high temperatures reached in the fireball at early time make it reasonable to assume that all materials
are in the gas form. The initial formation of a condensed phase or homogeneous nucleation will involve
overcoming the energy barrier associated to the surface energy of the new nuclei, which usually requires
vapor partial pressures corresponding with high levels of supersaturation.

Nucleated particles have typical radii of the order of nanometers and their properties are expected to be
different from those measured macroscopically. Nevertheless, a description of the nucleation process at the
atomistic level would be prohibitively expensive. At present, a viable alternative is to adopt the classical
theory of nucleation as introduced by Volmer and Weber (Volmer and Weber [1926], Seinfeld and Pandis
[1997]), which follows a statistical approach to describe the formation of metastable clusters by thermal
fluctuations. The description uses macroscopic quantities to describe the properties of the condensed phase,
for example representing the interface energy by means of the surface tension of the substance. It also treats
the growth of embryos as occurring one molecule at a time, while ignoring the depletion of the gas phase.

If the nuclei are deemed to be spherical with radius r and containing n molecules of mass m̄, we can write:

n =
4π
3

r3ρc

m̄
, (2)

where ρc is the macroscopic density of the condensed phase.

The Gibbs free energy (G) of the forming nuclei can be decomposed into bulk and surface components and
it is possible to write the change of energy associated with the formation of a nucleus as

∆G = (gc − gg)
4πr3ρc

3m̄
+ 4πr2σ =

(gc − gg)n + σ(4π)1/3
(
3m̄n
ρc

)2/3

, (3)

where gc and gg are the free energies per molecule in the condensed and gas phases, respectively, and σ is
the surface tension.

For conditions of supersaturation, gc < gg and the first term in (3) will be negative, whereas the second
term is always positive. This results in a critical value for the number of molecules in the nucleus, n∗,
corresponding to a maximum of ∆G. The system must progress so as to lower ∆G and clusters with n > n∗

are stable and will continue to grow, while those with n < n∗ will evaporate.

If the phase transformation occurs at constant temperature, the gas phase is considered ideal and the
density of the vapor negligible compared to that of the condensed phase, it is possible to write (Seinfeld
and Pandis [1997])

gc − gg = −kBTg ln Σ, (4)

where kB is Boltzmann’s constant, Tg is the temperature of the gas, and Σ is the supersaturation of the
vapor, i.e., the ratio of its partial pressure (Pv) to its saturation value over an infinite plane (P0).

By differentiating (3) with respect to n or r and equating to zero we can find the critical radius and number
of molecules for the embryos,

r∗ =
2σ

kBTg ln Σ

m̄
ρc
, n∗ = σ3 32

3
π

(
m̄
ρc

)2 1
(kBTg ln Σ)3 . (5)
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For a system with N0 molecules, under the assumption that a population of clusters exists that is in
equilibrium with the saturated vapor, it is possible to show that the cluster sizes will follow a Boltzmann
distribution (Feder et al. [1966])

N(n) = N0 exp
(
−

∆G
kBTg

)
, (6)

and the number of embryos of critical size satisfies

N(n∗) = N0 exp

16π
3

(
m̄

ρc ln Σ

)2 (
σ

kBTg

)3 . (7)

The nuclei of critical size are in metastable equilibrium and by the addition of an extra molecule they
become stable. The rate at which these collisions occur can be determined from the kinetic theory of gases,
and under the assumption that all collisions lead to coagulation, it is found that the rate at which stable
nuclei are formed per unit time and volume is

J =
µ

Σ ρc

(
Pv

kBT

)2 (
2 σ
πm̄

)1/2

exp

16π
3

(
m̄

ρc ln Σ

)2 (
σ

kBTg

)3 (8)

where Rv is the individual gas constant and µ the molar mass of the condensing substance. Different forms
of the factor multiplying N(n∗) in (8) have been derived, for example by relaxing condition (6) (Girshick
and Chiu [1990]), but overall the nucleation rates predicted by the classical theory can differ by several
orders of magnitude with experimental results. Given the uncertainties in the existing formulations, we will
refrain from considering further theoretical refinements, and we will also neglect the possibility of
heteromolecular nucleation, where more than one substance nucleate simultaneously.

In the discrete approximation to the particle population, in general the size of the nucleated particles will
not correspond to any of the characteristic sizes of the partitions. It is then necessary to associate the
particles to one of the existing bins, and it is common practice to add them to the closest partition with a
smaller characteristic radius. The mass added to the condensed phase is that computed with (8) and the
inexact radius used introduces an error in the size and number of the particles created. The mass nucleated
is then deducted from the vapor mass to maintain mass conservation.
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3. GROWTH

The rate of mass transfer of a substance from the gas phase to a single particle depends on the degree of
saturation of the corresponding vapor and the characteristics of the substrate. The latter affect the saturation
vapor pressure at the surface of the particle, mainly because of its curvature, the ability to react chemically,
or the ability to form a solution.

Although phase transformations require net fluxes of mass and heat and the system is not in equilibrium,
depending on the time scales involved it is sometimes possible to adopt a description that assumes that the
profiles of concentration and temperature have reached a steady state. This has been shown to typically
occur in a time scale much smaller than the characteristic condensation times (Frisch and Collins [1952,
1953]), which in our case are also usually much shorter than typical cooling rates.

The condensation (evaporation) of a substance at the surface of the particle results in the release
(absorption) of latent heat, which will alter the temperature of the interface and hence the saturation vapor
pressure and the flux of mass from the gas phase. The steady state is attained when fluxes satisfy

Ḣ = Ḣint − LṀ, (9)

where Ḣ and Ṁ are the heat and mass fluxes between the gas and the particle, Ḣint is the heat flux toward
the interior of the particle and L the latent heat of condensation. Except during the period of thermalization
of particles entrained into the fireball, in general Ḣint � Ḣ (Gyarmathy [1982]), and the heat and mass
fluxes can be considered to be proportional:

Ḣ = −LṀ. (10)

Given the particle characteristics, the vapor concentration and temperature in the gas phase, equation (10)
can be considered an implicit equation for the temperature at the interface (Ts).

The characteristic length of the system is the mean free path in the gas phase and different regimes can be
identified in terms of the size of the particles in relation to it (Fuchs [1959], Wright [1960]). This is usually
quantified in terms of the Knudsen number (Kn):

Kn = λ/r, (11)

where λ is the mean free path and r the radius of the particle.

Analytical expressions can be obtained for the fluxes in the limits of large and small Kn (Seinfeld and
Pandis [1997]). For Kn � 1, the gas can be seen as a continuum and the mass transport as a diffusion
process; consequently, the fluxes can be written as

Ṁ = −4π r Dvg
(Pv − Ps)

RvTg
, (12)

Ḣ = 4π r κ (Ts − Tg), (13)

where Dvg is the diffusivity of the condensing vapor in the carrier gas, κ the thermal conductivity and Pv the
partial vapor pressure in the gas phase‡

‡When the condensing vapors are very dilute in the gas phase, the mass advection by the flow can be neglected and the fluxes
are determined by diffusion (Gyarmathy [1982]).
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On the other hand, for small particles (i.e., Kn � 1) condensation can be described in terms of the
interaction of individual gas molecules with the substrate and in this case the fluxes take the form

Ṁ = 4πr2

 αePs
√

2πRvTs
−

αcPv√
2πRvTg

 , (14)

Ḣ = 4πr2

Pv
(
cp −

1
2 Rv

)
√

2πRvTg
+

Pg
(
cpg −

1
2 Rg

)
√

2πRgTg

 (Ts − Tg), (15)

where Pg, cpg and Rg are the pressure, specific heat, and gas constant of the gas, respectively; cp is the
specific heat of the condensing substance; and αc and αe the accommodation coefficients for condensation
and evaporation, here taken to be unity.

As multiple physical processes are involved in the evolution of the debris population, which results in a
wide range of particle sizes, it is necessary to have a functional description for the fluxes at intermediate
values of Kn. There are different approaches to achieving this, and here we follow the formulation by
Gyarmathy (Gyarmathy [1982], Peeters et al. [2001]), who writes the fluxes in terms of generalized Nusselt
numbers

Ṁ = 4πr2NuM(Kn)
(Ps − Pv)

Pg

D∗vg

2r
, (16)

Ḣ = 4πr2NuH(Kn)(Ts − Tg)
κ

2r
, (17)

where D∗vg = DvgPg/RvTm and NuH and NuM are the Nusselt numbers associated with heat and mass
transport and whose functional dependence on Kn is chosen so that Ṁ and Ḣ tend to the right limits when
Kn→ 0 and Kn→ ∞. In the continuum limit this corresponds to

Nuc
M = 2, Nuc

H = 2, (18)

whereas in the molecular kinetics limit

Num
M =

2rRvTm

Dvg(Ps − Pv)

 αePs
√

2πRvTs
−

αcPv√
2πRvTg

 , (19)

Num
H =

2r
κ

Pv
(
cp −

1
2 Rv

)
√

2πRvTg
+

Pg
(
cpg −

1
2 Rg

)
√

2πRgTv

 , (20)

with Tm = (2Ts + Tg)/3.

For intermediate values of Kn we adopt the mapping (Gyarmathy [1982])

NuM =
Nuc

MNum
M

Nuc
M + Num

M
, NuH =

Nuc
HNum

H

Nuc
H + Num

H
. (21)

The vapor pressure on the surface of the particle depends on its composition. In particular, if the
condensing substance is able to form a solution with all or part of the condensed phase, this can result in a
reduced Ps and a lower degree of supersaturation for condensation to occur. Simple analytical descriptions
of the properties of binary solutions are possible if the involved substances can be clearly classified as the
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Figure 2. Vapor pressure for a substance in a solution as a function of its molar fraction (x).

solvent and solute, under the assumption that one of them is in a much smaller concentration than the other
(Atkins [1986]).

When the condensing substance can be considered to be the dilute solute, it is common practice to use
Henry’s law, where its vapor pressure in the solution is given by

Ps = xH, (22)

with x the molar fraction of the solute and H its Henry’s law constant, which is in general determined
experimentally.

On the other hand, when the condensing substance is the most abundant in the solution, e.g., vaporized soil
in a surface burst, its vapor pressure is described by Raoult’s law,

Ps = xP0, (23)

where x is now the molar fraction of the solvent and P0 its vapor pressure over the pure substance.
Solutions for which Raoult’s law is satisfied for all concentrations are called ideal. In a real system, the
vapor pressure will show a dependence on the mole fraction that asymptotes to the two linear
approximations for the corresponding limits in x (Figure 2).

During the formation of nuclear debris, materials condense at different times depending on the volatility of
the species and their concentration. Depending on the scenario, it is likely that the most abundant
components, such as those associated to the casing of the weapon, will condense on an existing particle
population of more refractory species and will become the “matrix” of the particle. The models are then
required to be able to continuously handle the possibility that the condensing species forms a solution with
the substrate with a molar fraction that over time covers the range from x ≈ 0 to x ≈ 1. The model
described here is a generalized description that also covers the case of a solid substrate and allows for
conditions where, at low concentrations, the condensing substance forms a saturated solution with part of
the substrate corresponding to a mole fraction x∗ and pressure P∗ (e.g., the case of water condensing on
NaCl crystals), and that for larger concentrations the relation is linear with x (Figure 2). In this way, the
adjustment of the parameters x∗ and P∗ makes it possible to prescribe vapor curves that follow Henry’s or
Raoult’s laws, or that provide a better approximation to the real vapor curve for a wide range of molar
fractions.
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Another factor affecting the vapor pressure is the curvature of the surface of the particle, which is
classically described by Kelvin’s law (Kelvin [1870]),

Ps = P0 exp
(

2σ
rRvρcT

)
, (24)

where P0 is the saturation vapor pressure over an infinite flat surface.

Replacing (16) and (17) into (10) yields

NuHκ(Tg − Ts) = −NuMLD∗vg
(Pv − Ps)

Pg
, (25)

which can be solved for Ts and hence Ps. From the mass flux to the particles it is possible to obtain the
change in their radius with time. Using (16), (17) and (10) this can be written,

dr
dt

=
NuHκ

2rρcL
(Ts − Tg), (26)

dr
dt

= −
NuMD∗vg

2rρc

(Ps − Pv)
Pg

. (27)

These quantities are equivalent to a “velocity” along the particle-size axis. If we define a partitioning in
terms of particle radius, with bin i having characteristic radius ri and width ∆ri, the flux of particles across
a barrier Bi+1 can be written as

Fi =
dri

dt
ni

∆ri
, (28)

where ni is the number of particles contained in the i section.

In the case of condensation, Fi > 0 and particles will move toward a bin of larger size. During the time
interval ∆t,§ the mass of component k added to partition ri+1 and originating from the vapor phase satisfies,
apart from a factor,

∆mk
i ∝

Fi(ui+1 − ui)
ρk

c
∆t, (29)

where ui is the characteristic volume for partition i and ρk
c is the density of the condensed phase for

substance k.

In the case of a negative flux or evaporation, the equivalent expression is

∆mk
i ∝

Fi(ui − ui−1)
ρk

c
∆t, (30)

and now ∆mk
i is the mass transferred from bin i to the gas.

At each time step, conservation of mass for species k then takes the form∑
i

∆mk
i = ∆Mk

v , (31)

§We assume that ∆t is small enough for particles not to move beyond adjacent bins during one time step.
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where ∆Mk
v is the total change in mass for the vapor during ∆t.

As the mass and heat flux equations are nonlinear and a function of all the species in the system, their
numerical integration can result in instabilities. In this implementation, and for a given time step, we find
the solution for each species sequentially. This can be taken to be a linearization of the full equations, and
the solution will be a first order approximation.

The fluxes between bins described above need to take into account also the species that are not condensing
but are already present in the particles and moving with them. This means that when condensation occurs,
bin i experiences an additional change in mass given by

∆mi =
∑

l

Fi

ni
ml

i∆t, (32)

where the sum is taken over all species. In the case of evaporation, the equivalent relation is

∆mi =
∑

l

Fi

ni
ml

i∆t − ∆mk
i , (33)

where we discounted the mass lost to the gas phase.

11





4. COAGULATION (AGGLOMERATION)

The collision and coalescence of particles can have an important effect in the evolution of the overall
population. Here we will only consider the coalescence of particles in pairs. The rate at which two particles
merge into one, per unit time and volume, is usually decomposed into three factors (Saffman and Turner
[1956], Wang et al. [1998]). One of these, the collision kernel, describes the rate at which the particles are
driven to the same local region by the inhomogeneities in the velocity field. Here we will neglect the effect
of the particles on the macroscopic flow, that is the coupling is taken to be only one way. Numerical studies
have shown this assumption to be valid for particle volume fractions that are approximately below 10−4

(Elghobashi and Truesdell [1993], Ferrante and Elghobashi [2003]). Nevertheless, this approximation does
not apply when the particles are in close proximity and modify the local flow velocity. It is customary to
take this effect into account by introducing a second factor, the collision efficiency. Once two particles
collide, factors such as particle size, composition, and surface forces (e.g., van der Waals and electrostatic),
will determine if they coalesce into a single particle. This is known as the coalescence efficiency.

In our model we take the coalescence efficiency to be unity if both particles are in a liquid state or at least
one of them has a radius below a critical value (we do not differentiate between coagulation and
aggregation), otherwise we set its value to zero. Parameterizations of the collision efficiency for certain
regimes have been obtained (Davies and Sartor [1967], Wang et al. [2005]), but this is still an area of
research and in general we give this factor also a unit value. Below we focus on the formulation of the
collision kernel.

In a continuous description, the number of particles of size x per unit volume as a function of time varies as
a result of the coagulation process according to

∂n(x, t)
∂t

=

∫ x/2

x0

n(x − x′, t) V(x − x′|x′) n(x′, t) dx′

−

∫ ∞

x0

n(x, t) V(x|x′) n(x′, t) dx′, (34)

where x0 is the minimum size of the distribution (Smoluchowski [1917]). The first term on the right side
describes the contribution to particles of size x from the coalescence of pairs of particles smaller than x/2,
and the second term represents the loss of particles of size x due to their interaction with other particles.
The kernel V(x|x′) gives the probability of collision between a particle of size x with a particle of size x′,
and it represents the contributions of the different physical processes responsible for the relative velocity
between two particles, which drives them to the same region in space. In general terms, for two spherical
particles with radii r1 and r2, it can be written as

V(r1|r2) = 2πR2
∫
|vr |P(vr)dvr, (35)

where R = r1 + r2, vr is the relative velocity between the particles, and P(vr) the associated probability
distribution (Saffman and Turner [1956]). As shown schematically in (Figure 3), in a frame of reference
fixed on the particle with radius r1, the kernel represents the integral of the flux of particles with radius r2
across the sphere with radius R.

In the modeling of the evolution of nuclear debris it is necessary to take into account, at a minimum, the
relative particle velocities originating from velocity gradients in the flow, gravitational settling and
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R
r1

r2

Figure 3. Description of the collision sphere of radius R for the interaction of a particle with radius r1
with a particle with radius r2.

Brownian motion. There is no analytical expression for P(vr) that accounts for all these effects, and it is a
common practice to formulate individual contributions to the kernel and add them together. Nevertheless,
for this approach to be accurate, one of the terms in the expression for the kernel needs to be much larger in
magnitude than the rest (Butuirat and Kielkiewickz [1996]).

For the relative motion between particles caused by Brownian motion (Chandrasekhar [1943]) different
expressions can be derived as a function of the particle size with respect to the mean free path in the gas. In
the continuum regime, the kernel can be written (Seinfeld and Pandis [1997])

VB(r1|r2) = 4π(r1 + r2)(D1 + D2), (36)

where D is a diffusivity for particle i defined by

Di =
kBTg

6πriµg
, (37)

where µg is the dynamic viscosity of the gas.

In the molecular kinetics limit, the corresponding expression is

VB(r1|r2) = π(r1 + r2)2
√

v2
1 + v2

2, (38)

with

vi =

√
8kBTg

πMi
, (39)

where Mi is the mass of particle i.

As it was done earlier for the condensation fluxes, expressions for the collision kernel have been proposed
that are a function of the Knudsen number and valid for particles of all sizes (Fuchs [1959])

VB(r1|r2) = 4π (r1 + r2) (D1 + D2)

 r1 + r2

r1 + r2 +

√
δ2

1 + δ2
2

+
4(D1 + D2)√

v2
1 + v2

2(r1 + r2)


−1

, (40)
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with

δi =
(2ri + λi)3 − (4r2

i + λ2
i )3/2

6riλi
− 2ri, λi =

8Di

πvi
, (41)

and

Di =
kBTg

6πµgri

5 + 4Kni + 6Kn2
i + 18Kn3

i

5 − Kni + (8 + π)Kn2
i

 . (42)

The difference in velocity between a particle of radius r and density ρc and the surrounding gas due to its
inertia can be characterized in terms of the Stokes response time

τp =
2r2ρc

9νgρg
, (43)

where νg and ρg are the kinematic viscosity and density of the gas.

Locally and for the particle size ranges relevant to nuclear debris calculations, variations in the velocity
field due to turbulence can play an important role. At the dissipative scale the characteristic time (τg) and
length scales (ηg) can be defined as

τg =

√
νg

εg
, ηg =

ν3
g

εg

1/4

, (44)

where εg is the turbulent kinetic energy dissipation rate per unit mass. The importance of the particle inertia
can be quantified using the Stokes number:

Stk =
τp

τg
. (45)

For the interactions driven by turbulence, in the limit Stk → 0 the particles move with the gas flow, but for
Stk → ∞ inertia is important and particle trajectories deviate substantially from the local streamlines.
Particles with Stk ≈ 1 tend to accumulate in regions of high strain and low vorticity (Maxey [1987]),
leading to higher local concentrations and an enhancement of the collision kernel. Modifications to the
coagulation models to account for this effect have been proposed (Wang et al. [2005]).

If the turbulence can be taken to be isotropic, for small Stokes numbers the collision kernel takes the form
(Saffman and Turner [1956])

VT (r1|r2) = R3
(
8πηg

15νg

)1/2

. (46)

The other factors contributing to the collision rate are the shear in the velocity field and gravitational
effects. Under the local volume approximation we follow here, we will assume that the former is taken into
account in the computation of the global particle trajectories, and it is not included explicitly in the
expression of the collision kernel. In terms of gravitational effects, the kernel contribution can be written

VG(r1|r2) = πR2g|τp,1 − τp,2|, (47)
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where τp,i is the Stokes response time (43) for particle i.

Dodin and Elperin (Dodin and Elperin [2002]), assuming that the density of the particles is much larger
than that of the gas and the only forces acting on the particles are drag and gravity, proposed a unified
expression for the kernel that takes into account both turbulence and gravitational effects,

VD(r1|r2) =
√

8π(r1 + r2)2β f (b), (48)

with

b = g|τp,1 − τp,2|/β
√

2, (49)

f (b) = 0.5
√
π(b + 0.5/b) erf(b) + 0.5 exp (−b2), (50)

β = γ2 (r1 + r2)2 + λ2(τp,1 − τp,2)2, (51)

γ2 =
εg

15νg
, λ2 = 1.3

εg
3/2

νg
1/2 . (52)

In these expressions, the contribution to the kernel from turbulence effects becomes especially important
for pairs of particles of the same size and density, where the contribution from gravitational effects cancels.

Here we approximate the total collision kernel by the sum of the two contributions,

V(r1|r2) = VD(r1|r2) + VB(r1|r2). (53)

Depending on the regime, the functional dependence of VD on R follows Rα with 2 . α . 3, whereas for
VB the dependence on R is of lower order, with 1/2 . α . 1. This shows that the magnitude of the kernels
is very different for large and small particles, and (53) is an adequate description of the combined kernel.
On the other hand, the contributions by VD and VB are of the same magnitude for particles with radii of the
order of a micron (Seinfeld and Pandis [1997]), where also the total kernel tends to show a minimum. This
is compatible with observations that particles originating in nucleation rarely grow beyond a few microns
and that naturally occurring aerosol populations tend to present a minimum for those size ranges (Seinfeld
and Pandis [1997]).

In a discrete representation of the particle size distribution using N bins, it follows from (34) that the
change in the number of particles in bin i obeys

dni

dt
=

1
2

i−1∑
α=1

V(ri−α|rα) ni−α nα − ni

N∑
α=1

V(ri|rα) nα. (54)

The finite-differences integration of (54) gives the particle number at time t + 1 (nt+1) as a functions of its
value at time t (nt) by

nt+1
i = nt

i +
1
2

∆t
i−1∑
α=1

V(ri−α|rα) nt+1
i−α nt+1

α − ∆t
N∑
α=1

V(ri|rα) nt+1
i nt+1

α . (55)

16



Numerical solutions of (55) need to be obtained iteratively because both sides of the equation depend on
values at time t + 1. To reduce computational costs, we adopted a semi-implicit approach by Jacobson and
colleagues (Jacobson et al. [1994]), where nt+1

α on the right side of the equation is replaced by nt
α:

nt+1
i = nt

i +
1
2

∆t
i−1∑
α=1

V(ri−α|rα) nt+1
i−α nt

α − ∆t
N∑
α=1

V(ri|rα) nt+1
i nt

α. (56)

Although the right side of (56) still depends on quantities at time t + 1, the procedure is effectively explicit
if the computation is carried out sequentially for increasing particle sizes;

nt+1
i =

nt
i + 1

2 ∆t
∑i−1
α=1 V(ri−α|rα) nt+1

i−α nt
α

1 + ∆t
∑N
α=1 V(ri|rα) nt

α

. (57)

Because in our case particles of different sizes have different compositions and we want to impose mass
conservation, instead of (57) we use an equivalent scheme that has been shown to conserve volume at the
expense of some error in the particle number (Jacobson et al. [1994]). If we denote by uk,i,t the volume of
component k in size-bin i at time t, then its value at time t + 1 is obtained from

uk,i,t+1 =
uk,i,t + ∆t

∑i
α=1

(∑i−1
β=1 fα,β,i V(rα|rβ) uk,α,t+1 nβ,t

)
1 + ∆t

∑N
α=1

[
(1 − fi,α,i) V(ri|rα) nα,t

] , (58)

with

Uα,β = uα + uβ, (59)

and

fα,β,i =



(
ui+1 − Uα,β

vi+1 − ui

)
ui

Uα,β
ui ≤ Uα,β < ui+1, i < N,

1 − fα,β,i−1 ui−1 < Uα,β < ui, i > 1,
1 Uα,β ≥ ui, i = N,
0 other cases,

where the factor fα,β,i expresses the mapping of the particles formed by coagulation to the sizes available
from the discretization.

In general, if the collection efficiency¶ is not zero, the coagulation process will lead to the creation of
particles of increasing sizes. One way to deal with the evolving particle-size range within a sectional
approach is to use moving partitions, where the barrier locations are a function of time (Jacobson and
Turco [1995]). Alternatively, a fixed size domain can be chosen that truncates the particle sizes at a given
value, which can be selected large enough so that only a small fraction of the overall population is affected.
Although the latter approach is simpler to implement, it may result to be more computationally expensive if
a wider size domain leads to a larger number of bins.

¶The product of the collision and coalescence efficiencies.
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5. SUMMARY

First principles models of nuclear debris formation have been proposed in the past but were not widely
implemented because of the high computational cost (Miller [1960]). Semianalytical models were
developed instead, which form the basis of operational codes in use today (Norment [1979]). The evolution
of computational power makes it possible now to consider a wider use of first principles approaches and a
reduction in the reliance on parameterizations. This is particularly important if predicting capabilities are to
be extended beyond the type of scenarios that dominated nuclear tests during the 20th century.

The description presented here offers a first order approximation to this problem, trying to balance a first
principles approach that is able to resolve features of interest, with moderate computational costs, making
it suitable as a research or semioperational tool. The problem of nuclear debris formation is, at the time of
writing, an area of active research, and the current priority is understanding the physical processes that play
an important role in the development of the observed debris characteristics.

Although there are parallels between the problem considered here and other systems in which particulates
form from a gas phase, there are also unique challenges, such as a wide range of particle sizes, a
composition that varies not only because of chemistry but also because of radioactive decay, and a large
number of species that are present in very different mass fractions.

The models described here are taken from the literature and have been developed with different
applications in mind, for example in the study of heat exchangers in industrial settings (Gyarmathy [1982])
or the evolution of aerosols in the atmosphere (Seinfeld and Pandis [1997]). Although these regimes will
differ from those in a fireball, we believe the principal physical processes, namely nucleation, growth, and
agglomeration, still play a dominant role, although their relative importance is likely to be different. For
simple configurations, for example one component systems, these models have been validated by
comparison with analytical solutions. In the case of the formation of nuclear debris the complexity of the
system makes the validation process much more involved.

An additional challenge faced here is the difficulty in experimentally reproducing the conditions in which
nuclear debris is formed. There have been attempts at approximating those conditions at the laboratory
scale (Dai et al. [2013], Koroglu et al. [2017]), but some parameters, such as the rate of cooling, still do not
match those considered to be characteristic of nuclear fireballs. The use of historic data in the form of
fallout patterns is also of limited value for validation purposes because the required atmospheric transport
models introduce additional uncertainties (Stein et al. [2015]). A better source of data are historic debris
samples, which were analyzed at the time of the tests (e.g., Nathans [1969]), and more recently using
modern analytical techniques (Eppich et al. [2014]). Nevertheless, the number of samples studied thus far
is small, making it difficult to derive conclusions of statistical significance. Apart from these limitations, all
these sources of data, likely in aggregate, will play an important role in the validation and future
development of these models.
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